## GCE MARKING SCHEME

SUMMER 2016

## PHYSICS PH2 - (LEGACY) 1322/01

## INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCE PHYSICS PH2 - (LEGACY)

## SUMMER 2016 MARK SCHEME



| Question |  |  | Marking details | Marks Available |
| :---: | :---: | :---: | :---: | :---: |
| 2 | (a) |  | $\begin{aligned} & \lambda=2.0[\mathrm{~m}] \text { or equivalent }(1) \\ & f=171[\mathrm{~Hz}](\text { ecf on wrong value of } \lambda)(1) \end{aligned}$ | 2 |
|  |  | (ii) | Progressive waves travelling in opposite directions interfere (accept superpose). (1) Waves in opposite directions arise from reflections [at ends of pipe] (1) | 2 |
|  | (b) | (i) | Graph shifted one division ( 0.1 m ) to the right (1) Whole string shown, and amplitude roughly same as before (1) | 2 |
|  |  | (ii) | $\begin{aligned} & \lambda=0.40[\mathrm{~m}] \text { or } T=0.080[\mathrm{~s}] \text { or by implication (1) } \\ & f=12.5 \mathrm{~Hz} \text { unit mark }(1) \end{aligned}$ | 2 |
|  |  | (iii) | [From $\lambda=\frac{v}{f}$ ] $\lambda$ decreases (1) assuming $v$ unchanged (or tension unchanged) | 2 |
|  |  |  | Question 2 total | [10] |



| Question |  |  | Marking details | Marks Available |
| :---: | :---: | :---: | :---: | :---: |
| 4 | (a) | (i)(ii) | Energy of photon [of frequency $f$ ] | 1 |
|  |  |  | [Minimum] energy needed to eject an electron [not "electrons"] from a surface [or a metal or a solid, not an atom]. | 1 |
|  | (b) | (i) | $\begin{aligned} & h f=7.40 \times 10^{14} \times 6.63 \times 10^{-34}-3.65 \times 10^{-19} \text { seen or by implic (1) } \\ & E_{k \max }=1.26 \times 10^{-19}[\mathrm{~J}] \text { (1) } \end{aligned}$ | 2 |
|  |  | (ii) | $E_{k \text { max }}=1.26 \times 10^{-19}[\mathrm{~J}]$ ecf or same as for violet alone or equivalent | 1 |
|  |  | (iii) | No emission because photon energy too small (1) $h f=3.46 \times 10^{-19} \mathrm{~J}$, which is less than $\phi, h f-\phi=-1.9 \times 10^{-20} \mathrm{~J}$ with attention drawn to minus sign or equivalent (1) | 2 |
|  | (c) |  | Increase voltage from zero until microammeter reads zero (accept until current is zero) or equivalent (1) <br> $E_{k \text { max }}=e \times$ 'cut-off voltage' accept $E_{k \text { max }}$ in eV $=$ cut-off voltage (1) | 2 |
|  |  |  | Question 4 Total | [9] |




| Question |  |  | Marking details | Marks Available |
| :---: | :---: | :---: | :---: | :---: |
| 7 | (a) <br> (b) | (i) | proton: uud, charge $=\frac{2}{3}+\frac{2}{3}+-\frac{1}{3}=1.0$ [units of e] (1) <br> neutron: udd, charge $=\frac{2}{3}+-\frac{1}{3}+-\frac{1}{3}=0(1)$ <br> [Accept alternative presentations in which quark constitutions of $p$ and $n$ are clear, and charges of $u$ and $d$ are clear.] <br> Charge <br> LHS: $4 \mathrm{p}, 1 \mathrm{e}^{-}$[overall charge 3 e ]; RHS: 3 p , $v_{\mathrm{e}}$ has no charge [overall charge 3e] Accept 4-1 $\rightarrow 3+0$ (1) <br> Lepton number | 2 2 |
|  |  | (ii) | Proton lost, neutron gained [or proton changes to neutron] (1) u lost, d gained [or u changes to d] (1) | 2 |
|  |  | (iii) | ${ }_{2}^{3} \mathrm{He}$ lost, ${ }_{2}^{4} \mathrm{He}$ gained [or ${ }_{2}^{3} \mathrm{He}$ changed to ${ }_{2}^{4} \mathrm{He}$ ] | 1 |
|  |  | (iv) | Fusion: [smaller or lighter] nuclei combine (1) <br> E-m interaction: shown by $\gamma$ or photon released (1) | 2 |
|  |  |  | Question 7 Total | [9] |

